Set
Different notations:
- $\mathcal{P}(S)$: powerset
Example 1. $A \cup B = \bigcup \{A, B\}$.
Proof. $\Rightarrow: A \cup B \subseteq \bigcup \{A, B\}.$
$\forall x \in A \cup B$, we have $x \in A$ or $x \in B$. By definition, $x \in \bigcup \{A, B\}$.
$\Leftarrow: \bigcup \{A, B\} \subseteq A \cup B$.
$\forall x \in \bigcup \{A, B\}, \exists T \in \{A, B\}, x \in T.$ Therefore $x \in A$ or $x \in B$.
Relations
Cartesian product $A \times B = \{(x, y) \vert x \in A, y \in B\}$.
Projections over pairs: $\pi_0(x, y) = x, \pi_1(x, y) = y$.
$\rho$ is a relation from $A$ to $B$ if $\rho \subseteq A \times B$, or $\rho \in \mathcal{P}(A \times B)$.
We say $\rho$ relates $x$ and $y$ if $(x, y) \in \rho$, written as $x \rho y$.
$\rho$ is an identity relation if $\forall (x, y) \in \rho, x = y$.
Equivalence Relations:
- Reflexivity: $Id_S \subseteq \rho$.
- Symmetry: $\rho^{-1} = \rho$.
- Transitivity: $\rho \circ \rho \subseteq \rho$.
Function
A relation $\rho$ is a function if, for all $x, y$ and $y'$, $(x, y) \in \rho$ and $(x, y') \in \rho$ imply $y = y'$.
Variation
Variation of a function at a single argument:
$$f\{ x \leadsto n\} = \lambda z. \begin{cases} fz, & z \neq x, \\ n, & z = x. \end{cases}$$
Note that $x$ does not have to be in $\text{dom}(f)$ (domain of $f$).
$$\text{dom}(f\{x \leadsto n\}) = \text{dom}(f) \cup \{x\},$$ $$\text{ran}(f\{x \leadsto n\}) = \text{ran}(f - \{(x, n') | (x, n') \in f\}) \cup \{n\}.$$
Note: $\text{ran}(f\{x \leadsto n\}) \neq \text{ran}(f) \setminus \{n'\} \cup \{n\}.$
Function Types
$A \rightarrow B$ denotes the set of all function from $A$ to $B$. $\rightarrow$ is right associative.
$$A \rightarrow B \rightarrow C = A \rightarrow (B \rightarrow C).$$
Suppose $f \in A \rightarrow B \rightarrow C$, $a \in A$ and $b \in B$, then $f a b = (f(a))b \in C$.
Note: $f a b \neq f(a, b)$. $fa$ is a function of $B \rightarrow C$. They can be transformed by currying.
Products
$(x_0, \dots, x_{n-1})$ is called a $n$-tuple. $\pi_i(x_0, \dots, x_{n-1}) = x_i$.
Tuples as Functions
We can view a pair as a function $$\lambda i \in \textbf{2}. \begin{cases} x, & i=0, \\ y, & i = 1. \end{cases}$$
where $\textbf{2} = \{0, 1\}.$ Then we can redifine Cartesian products as $$A \times B = \{f | \text{dom}(f) = \textbf{2}, f0 \in A, f1 \in B\}.$$
Similarly, we can view a $n$-tuple as a function $$\lambda i \in \textbf{n}. \begin{cases} x_0, & i=0, \\ \dots & \dots \ x_{n-1}, & i = n-1. \end{cases}$$
where $\textbf{n} = \{0, 1, \dots, n-1\}.$ Then we can redifine $$S_0 \times \cdots \times S_{n-1} = \{f | \text{dom}(f) = \textbf{n}, \forall i \in \textbf{n}, f i \in S_i\}.$$
Generalized Products
Define $\Pi \theta$
$$\Pi \theta = \{ f \vert \text{dom}(f) = \text{dom}(\theta), \forall i \in \text{dom}(\theta), fi \in \theta i\}.$$
Example: $\theta = \lambda i \in \textbf{2}.\textbf{B}.$, then $\theta$ is a function from $\{0, 1\}$ to $\{T, F\}$.
$$\Pi \theta = \left\{\{(0, T), (1, T)\}, \{(0, T), (1, F)\}, \{(0, F), (1, T)\}, \{(0, F), (1, F)\}\right\}.$$
Note that $\textbf{B} \times \textbf{B} = \{(T, T), (T, F), (F, T), (F, F)\}$ by definition. There is a map between $\textbf{B} \times \textbf{B}$ and $\Pi \theta$.
Example 2: $\Pi \emptyset = \{\emptyset\}$.
Example 3: If $\exists i \in \text{dom}(\theta)$, $\theta i = \emptyset$, then $\Pi \theta = \emptyset$.
Exponentiation
If $S$ is independent of $x$,
$$S^T = \prod\limits_{x \in T} S = \Pi (\lambda x \in T.S) = (T \rightarrow S)$$
$S^T$ is the set of all functions from $T$ to $S$.
The powerset of $S$, $\mathcal{P}(S) = 2^S = (S \rightarrow \textbf{2})$.
Sums (Disjoint Unions)
To define the disjoint union of $A$ and $B$, we need to index the elements according to which set they originated in.
$$A+B = \{(i, x) | (i=0 \wedge x \in A) \vee (i=1 \wedge x \in B)\}.$$
Injection operations ($\iota$, iota):
$$\iota_{A+B}^0 \in A \rightarrow (A+B)$$ $$\iota_{A+B}^1 \in A \rightarrow (A+B)$$
The disjoint union can be generalized to $n$ sets:
$$S_0 + \cdots + S_{n-1} = \{ (i, x) | i \in \textbf{n} \wedge x \in S_i \}.$$
Define $\Sigma \theta$ as
$$\Sigma \theta = \{(i, x) | i \in \text{dom}(\theta), x \in \theta i\}$$
Example 1: $\sum\limits_{i \in \textbf{n}} S(i) = \Sigma \left(\lambda i \in \textbf{n}.S(i)\right).$
Example 2. Let $\theta = \lambda i \in \textbf{2}.\textbf{B}$. Then $$\Sigma \theta = \{ (0, T), (0, F), (1, T), (1, F) \} = \textbf{2} \times \textbf{B}.$$
Example 3. $\Sigma \emptyset = \emptyset$.
Example 4. If $\forall i \in \text{dom}(\theta)$, $\theta i = \emptyset$, then $\Sigma \theta = \emptyset$.
Example 5. Let $\theta = \lambda i \in \textbf{2}. \begin{cases} \textbf{B}, & i = 0, \\ \emptyset, & i = 1. \end{cases}$, then $\Sigma \theta = \{(0, T), (0, F)\}.$
If $S$ is independent of $x$, then
$$\sum\limits_{x \in T} S = \Sigma (\lambda x \in T.S) = (T \times S).$$
Loading Comments By Disqus